Exercise 62

Prove, without graphing, that the graph of the function has at least two x-intercepts in the specified interval.

$$
y=x^{2}-3+1 / x, \quad(0,2)
$$

Solution

The function $f(x)=x^{2}-3+1 / x$ is the sum of two functions, $g(x)=x^{2}-3$ and $h(x)=1 / x$, which are both continuous on their respective domains by Theorem 7. And by Theorem $4, f(x)$ is continuous wherever both $g(x)$ and $h(x)$ are. Evaluate the function at several values of x in the interval of interest.

$$
\begin{aligned}
f(0.25) & \approx 1.06 \\
f(0.5) & =-0.75 \\
f(0.75) & \approx-1.10 \\
f(1) & =-1 \\
f(1.25) & \approx-0.638 \\
f(1.5) & \approx-0.0833 \\
f(1.75) & \approx 0.634 \\
f(2) & =1.5
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [0.25, 0.5], and $N=0$ lies between $f(0.25)$ and $f(0.5)$. By the Intermediate Value Theorem, then, there exists an x-intercept within $0.25<x<0.5$. Also, $f(x)$ is continuous on the closed interval [1.5, 1.75], and $N=0$ lies between $f(1.5)$ and $f(1.75)$. By the Intermediate Value Theorem, then, there exists another x-intercept within $1.5<x<1.75$. Therefore, there are at least two x-intercepts in the interval $(0,2)$-more can potentially be found by evaluating $f(x)$ at even more values of x.

